

Requirements for Implementing
the Microsoft Hypervisor
Interface

June 13, 2012

Abstract

This paper provides information about the minimum set of functionality required to
support the Microsoft hypervisor interface. It provides details on the mandatory
features in the Microsoft-compatible hypervisor interface required for virtualizing
Microsoft Windows operating systems, and offers guidelines for virtualization
solution developers to determine which optional features may be supported, and the
effect of these features on Windows operating systems when running virtualized.

It assumes that the reader is familiar with the Microsoft Hypervisor Top Level
Functional Specification.

This information applies to the following operating systems:
 Windows 8
 Windows Server 2012

References and resources discussed here are listed at the end of this paper.

The current version of this paper is maintained on the Web at:
 Requirements for Implementing the Microsoft Hypervisor Interface

Disclaimer: This document is provided “as-is”. Information and views expressed in this document, including
URL and other Internet website references, may change without notice. Some information relates to pre-
released product which may be substantially modified before it’s commercially released. Microsoft makes no
warranties, express or implied, with respect to the information provided here. You bear the risk of using it.

This document does not provide you with any legal rights to any intellectual property in any Microsoft
product. You may copy and use this document for your internal, reference purposes.

© 2012 Microsoft. All rights reserved.

https://github.com/Microsoft/Virtualization-Documentation/raw/master/tlfs/Requirements%20for%20Implementing%20the%20Microsoft%20Hypervisor%20Interface.pdf

Requirements for Implementing the Microsoft Hypervisor Interface - 2

June 13, 2012
© 2012 Microsoft. All rights reserved.

Document History
Date Change

June 13, 2012 First publication

Contents

Introduction ... 3
Requirements for a Minimal HV#1Interface .. 3
Hypervisor and Microsoft Hypervisor Interface Discovery .. 3

Determining Hypervisor Capabilities ... 4
Microsoft Hypervisor Interface Identification ... 4
Hypervisor Vendor-Neutral Interface Identification ... 4

Hypervisor CPUID Leaves ... 4
Required Hypervisor CPUID Leaves ... 4
Maximum Supported Virtual Processors ... 7

Hypervisor Synthetic MSRs .. 8
Virtual Processor Index .. 8

Hypercall Interface ... 8
Optional Partition Privileges .. 8

Partition Reference Time Enlightenment .. 9
Reference Time Enlightenment and Virtual Machine Migration 9

Use Relaxed Timing .. 10
Virtual Guest Idle State .. 10

Miscellaneous Implementation Notes ... 10
Inter-Processor Interrupts (IPI) .. 10
Microsoft Hyper-V Virtual Machine Bus .. 11

Resources ... 11

Requirements for Implementing the Microsoft Hypervisor Interface - 3

Introduction

Microsoft publishes the Hypervisor Top-Level Functional Specification (TLFS) for the
Microsoft hypervisor, a component of Microsoft Windows Server virtualization since
Windows Server 2008. The TLFS specifies the externally visible behavior of the
hypervisor. The TLFS can be used to understand the functions of the hypervisor, and
enables virtualization solution providers to implement a Microsoft-compatible
solution by conforming to the published Microsoft hypervisor interface.

The Microsoft hypervisor interface was designed to allow virtualization providers to
implement a minimal subset of the functionality described in the TLFS, and to
selectively enable specific features. This paper specifies the minimum set of
requirements needed for conforming hypervisors to support virtualizing Windows
operating systems, and offers details on the behavior of Windows operating systems
in the presence of specific hypervisor provided features beyond the required minimal
set that a conforming hypervisor may wish to support.

Supported Windows Operating Systems

The following versions of Windows operating systems support the Hv#1 interface.
Note that not all features of the Hv#1 interface may be supported by all Windows
versions.

 Windows Vista

 Windows Server 2008

 Windows 7

 Windows Server 2008 R2

 Windows 8

 Windows Server 2012

Requirements for a Minimal HV#1Interface

The minimal interface set required by compliant hypervisors in order to support
Windows operating systems when running in a guest virtual machine is summarized
below. Details of each requirement are provided in subsequent sections.

 Hypervisor discovery via the CPUID instruction

 Hypervisor CPUID leaves 0x40000000- 0x40000005

 Hypervisor interface signature equal to “Hv#1”

 Partition privileges AccessVpIndex, AccessHypercallMsrs

 Hypervisor synthetic MSRs HV_X64_MSR_GUEST_OS_ID,
HV_X64_MSR_HYPERCALL and HV_X64_MSR_VP_INDEX.

 A minimal implementation of the hypercall interface


Hypervisor and Microsoft Hypervisor Interface Discovery

During kernel initialization, the Microsoft operating systems listed in this paper
perform the following checks to determine if they are running virtualized, the

June 13, 2012
© 2012 Microsoft. All rights reserved.

hypervisor interface present, and which hypervisor features and capabilities may be
used.

Detecting the Presence of a Hypervisor

Software determines the presence of a hypervisor through the CPUID instruction.
Processors conforming to the Intel® 64 architecture have reserved a feature flag in
CPUID Function 0x01 - Feature Information for this purpose. Bit 31 returned in ECX is
defined as Not Used, and will always return 0 from the physical CPU. A hypervisor
conformant with the Microsoft hypervisor interface will set CPUID.1:ECX [bit 31] = 1
to indicate its presence to software.

Determining Hypervisor Capabilities

When the hypervisor present bit is set, additional CPUID leaves are provided by the
hypervisor which will return more information about the hypervisor and its
capabilities.

The Intel® 64 architecture reserves CPUID leaves 0x40000000-0x400000FF for use by
system software. A Microsoft-compliant hypervisor guarantees leaves 0x40000000
and 0x40000001 are always available

Microsoft Hypervisor Interface Identification

The standard hypervisor CPUID leaf is provided at 0x40000000. When queried, this
leaf will return the maximum hypervisor CPUID leaf number, and the vendor ID
signature.

Hypervisor Vendor-Neutral Interface Identification

The hypervisor interface identification is provided at CPUID leaf 0x40000001.
Hypervisors conforming to the Microsoft hypervisor interface will return the
hypervisor interface identification signature ‘Hv#1’ (0x31237648) in
CPUID.40000001:EAX.

Hypervisor CPUID Leaves

Refer to the TLFS for the following discussion.

Required Hypervisor CPUID Leaves

The following hypervisor CPUID leaves must be supported by conformant
hypervisors. Note that it is generally recommended to return 0 for all CPUID leaves
except those that are marked as required in this document, and for those specific
features that a conforming hypervisor chooses to implement.

Leaf 0x40000000 — Hypervisor CPUID leaf range and vendor ID signature
Register Information Required Notes

EAX Hypervisor CPUID leaf range Yes

EBX Vendor ID signature Yes Used only for reporting and
diagnostic purposes

ECX Vendor ID signature Yes Used only for reporting and
diagnostic purposes

June 13, 2012
© 2012 Microsoft. All rights reserved.

Register Information Required Notes

EDX Vendor ID signature Yes Used only for reporting and
diagnostic purposes

Notes

This leaf is recommended, and may be used for diagnostic and reporting purposes.
For details on reporting hypervisor version information, refer to the TLFS Section 3.5.

Leaf 0x40000002 — Hypervisor system identity
Register Information Required Notes

EAX Build number No

EBX Bits 31-16: Major Version
Bits 15-0: Minor Version

No Used only for reporting and
diagnostic purposes

ECX Service Pack No Used only for reporting and
diagnostic purposes

EDX Bits 31-24: Service Branch
Bits 23-0: Service Number

No Used only for reporting and
diagnostic purposes

Notes

This leaf is recommended, and may be used for diagnostic and reporting purposes.
For details on reporting hypervisor version information, refer to the TLFS Section 3.5.

Leaf 0x40000003 — Hypervisor feature identification
Register Information Required Notes

EAX Features available to the
partition based upon the
current partition privileges

Yes See details below

EBX Flags specified at partition
creation

Yes See details below

ECX Power management related
information

No May be zero

EDX Miscellaneous features
available to the partition

No May be zero

Notes

CPUID.40000003:EAX and EBX indicate partition privileges and access to virtual MSRs.
Conforming hypervisors must implement EAX and EBX as defined below. A
conforming hypervisor returning any non-zero value in 0x40000003.EAX or EBX must
support the corresponding functionality as defined in the TLFS.

CPUID.40000003:EAX — Partition Privileges
Bit Description Required

Bit 0 AccessVpRunTimeMsr Optional

Bit 1 AccessPartitionReferenceCounter Optional

Bit 2 AccessSynicMsrs Optional

Bit 3 AccessSyntheticTimerMsrs Optional

Bit 4 AccessApicMsrs Optional

Bit 5 AccessHypercallMsrs Must be set

Bit 6 AccessVpIndex Must be set

Bit 7 AccessResetMsr Optional

Bit 8 AccessStatsMsr Optional

June 13, 2012
© 2012 Microsoft. All rights reserved.

Bit Description Required

Bit 9 AccessPartitionReferenceTsc Optional

Bit 10 AccessGuestIdleMsr Optional

Bit 11 AccessFrequencyMsrs Optional

Bits 12-31 Reserved

Notes

Partition privileges must be identical for all virtual processors in a partition, and must
remain constant for the lifetime of the virtual machine1.

CPUID.40000003:EBX Feature Identification —Partition Flags
Bit Description Required

Bit 0: CreatePartitions Must be clear

Bit 1: AccessPartitionId Must be clear

Bit 2: AccessMemoryPool Must be clear

Bit 3: AdjustMessageBuffers Must be clear

Bit 4: PostMessages Optional

Bit 5: SignalEvents Optional

Bit 6: CreatePort Must be clear

Bit 7: ConnectPort Optional

Bit 8: AccessStats Must be clear

Bit 9-10: Reserved2

Bit 11: Debugging Optional

Bit 12: CpuManagement Must be clear

Bit 13: ConfigureProfiler Must be clear

Bit 14-31: Reserved3

Notes

These are enlightenment bits which indicate to the guest OS kernel which hypercalls
are recommended, in addition to other information. A conforming hypervisor
returning any non-zero value in 0x40000004.EAX must support the corresponding
functionality as defined in the TLFS.

Leaf 0x40000004 — Enlightenment implementation recommendations
Register Information Required Notes

EAX Implementation
recommendations

No May be zero

EBX Recommended number of
attempts to retry a spinlock
failure

No Set to 0x0 to disable

0xFFFFFFFF indicates never to retry

ECX Reserved No —

EDX Reserved No —

1 The AccessPartitionReferenceTsc is exempt from this requirement; see details below in this
document.

June 13, 2012
© 2012 Microsoft. All rights reserved.

Notes

These are enlightenment bits which indicate to the guest OS kernel which hypercalls
are recommended, in addition to other information. A conforming hypervisor
returning any non-zero value in 0x40000004.EAX must support the corresponding
functionality as defined in the TLFS.

Leaf 0x40000005 — Implementation limits
Register Information Required Notes

EAX The maximum number of
virtual processors supported

No May be zero

EBX The maximum number of
logical processors supported

No May be zero

ECX Reserved No —

EDX Reserved No —

Notes

On Windows operating systems versions through Windows Server 2008 R2, Leaf
0x40000005 — Implementation limits is used for reporting purposes only.

Maximum Supported Virtual Processors

On Windows operating systems versions through Windows Server 2008 R2, reporting
the HV#1 hypervisor interface limits the Windows virtual machine to a maximum of
64 VPs, regardless of what is reported via CPUID.40000005.EAX.

Starting with Windows Server 2012 and Windows 8, if CPUID.40000005.EAX contains
a value of -1, Windows assumes that the hypervisor imposes no specific limit to the
number of VPs. In this case, Windows Server 2012 guest VMs may use more than 64
VPs, up to the maximum supported number of processors applicable to the specific
Windows version being used.

However, it is important to note that if more than 64VPs are used, the following
hypercalls will not function correctly.

 HvFlushVirtualAddressSpace

 HvFlushVirtualAddressList

Therefore, a conforming hypervisor reporting -1 in CPUID.40000005.EAX must not
recommend these hypercalls (i.e., CPUID.40000004.EAX:1-2 must be cleared).

Leaf 0x40000006 — Implementation hardware features
Register Information Required Notes

EAX Implementation
recommendations

No May be zero

EBX Reserved No —

ECX Reserved No —

EDX Reserved No —

June 13, 2012
© 2012 Microsoft. All rights reserved.

Hypervisor Synthetic MSRs

The Microsoft hypervisor interface defines a number of synthetic MSRs that are
available to guest software, depending on the partition privileges. Windows
operating systems supporting the Hv#1 interface require the following synthetic
MSRs to be present in conforming hypervisors.

Hypervisor Synthetic MSRs
MSR Number MSR Name Required

0x40000000 HV_X64_MSR_GUEST_OS_ID Yes

0x40000001 HV_X64_MSR_HYPERCALL Yes

0x40000002 HV_X64_MSR_VP_INDEX Yes

Virtual Processor Index

Microsoft Windows operating systems running in a virtual machine identify virtual
processors using a VP index retrieved from synthetic MSR 0x40000002. A conforming
hypervisor must supply VP indices, and all VP indices must be unique.

Hypercall Interface

A conforming hypervisor must support mapping a hypercall page within the guest’s
GPA space. The hypercall page must be both readable and executable, and the
contents of the mapped hypercall code page must not change without an
un-map/map transition. The hypercall page does not actually have to cause a
hypervisor transition. Note that Windows Kernel Patch Protection (aka Windows
PatchGuard) protects the contents of the hypercall code page.

All enlightened versions of Windows operating systems invoke guest hypercalls on
the basis of the recommendations presented by the hypervisor in
CPUID.40000004:EAX. A conforming hypervisor must return
HV_STATUS_NOT_IMPLEMENTED for any unimplemented hypercalls. If a hypervisor
does not wish to handle any hypercalls, it may implement the following hypercall
code page minimal sequence.

mov eax, 0x02 ; HV_STATUS_INVALID_HYPERCALL_CODE

mov edx, 0

ret

Optional Partition Privileges

Conforming hypervisors may elect to implement select features beyond the minimal
set of requirements described in this document. Examples of such features are:

 The partition reference TSC enlightenment

 Enabling relaxed timing in the guest OS

 The virtual guest idle state

Each of these is discussed in greater detail below.

June 13, 2012
© 2012 Microsoft. All rights reserved.

Partition Reference Time Enlightenment

The partition reference time enlightenment is documented in the TLFS section 15.4. A
conforming hypervisor may also implement similar support, as long as the
implementation provides the expected semantics. A conforming hypervisor must
provide the HV_X64_MSR_REFERENCE_TSC and HV_X64_MSR_TIME_REF_COUNT
MSRs.

The partition reference time enlightenment is supported on the following Windows
versions:

 Windows 7

 Windows 7 SP1

 Windows Server 2008 R2

 Windows Server 2008 R2 SP1

In order to use the partition reference time enlightenment, the Windows guest OS
partition must hold the following partition privileges:

 AccessPartitionReferenceCounter privilege (CPUID.40000003.EAX:1=1). A
hypervisor that provides this privilege must provide the
HV_X64_MSR_TIME_REF_COUNT MSR.

 On systems with a constant rate TSC (C-state invariant TSC, or iTSC, the
AccessPartitionReferenceTsc privilege (CPUID.40000003.EAX:9=1). The
hypervisor must provide the HV_X64_MSR_REFERENCE_TSC MSR and allow
mapping the reference TSC page.

If the Reference TSC and Reference Time enlightenments are present, Windows
requires that:

 All TSCs must be sync’d across all processors

 If support for iTSC is advertised (CPUID.80000007.EDX:8=1), the hypervisor
must ensure the TSC rate remains constant for the lifetime of the VP, across
all partition state change operations such as partition Saves, Restore,
migration of the partition to a different virtualization host, etc. If the iTSC is
present, Windows will use RDTSC directly as the system time source backing
the QueryPerformanceCounter function call2.

Reference Time Enlightenment and Virtual Machine Migration

If a Windows VM which supports the Reference Time Enlightenment starts on an
invariant TSC system and then is moves to a system without an invariant TSC, it will
use the fallback mechanism described in the TLFS v2.0 Section 15.4.3.3 Reference TSC
during Save/Restore and Migration, wherein the VM will revert to using the virtual
ACPI Power Management Timer (PM Timer). However, if the VM starts on a non-
invariant TSC system and moves to an invariant TSC system, it will not re-enlighten
itself to detect the presence of the partition reference time enlightenment. In all

2 Applies to Windows Server 2008 R2 and later.

June 13, 2012
© 2012 Microsoft. All rights reserved.

cases, the underlying hypervisor must preserve the reference time across all virtual
machine migrations or state changes.

Use Relaxed Timing

Hypervisor CPUID leaf CPUID.0x40000004.EAX:5 supplies a recommendation that the
guest OS should use relaxed timing. When Windows operating systems supporting
the Hv#1 interface detect that this bit is set3, they disable both clock interrupt and
DPC watchdog timeouts. This helps avoid false positive triggers of these watchdog
timers due to delays in delivering interrupts or scheduling virtual processors that
might be introduced on a heavily loaded or over-subscribed virtualization platform.

Starting with Windows Server 2012 and Windows 8, Windows will use relaxed timing
if any hypervisor is present (i.e., if CPUID.1:ECX [bit 31]=1. If the hypervisor declares
support for the Hv#1 interface, then Windows’ use of relaxed timing will follow the
recommendation in CPUID.0x40000004.EAX:5.

Virtual Guest Idle State

Windows 7 and Windows Server 2008 R2 introduced support for several processor
power management enhancements, including Intelligent Timer Tick Distribution
(ITTD)4. ITTD helps to extend the amount of time that processor cores remain in the
idle state by not interrupting all cores in the system when the periodic timer interrupt
is delivered. Only the base service processor (BSP) receives every timer tick interrupt,
which it optionally delivers to secondary processor cores. On virtualized systems,
ITTD helps realize reduced interrupt traffic and longer idle periods.

Windows cannot use ITTD when entering the ACPI C1 processor idle state due to the
entry semantics of the C1 state. However, Windows operating systems do not
support legacy ACPI processor idle sleep states greater than the ACPI C1 state in the
presence of the Hv#1 hypervisor interface.

To enable the use of processor power management enhancements such as ITTD, the
TLFS v2.0 defines a Virtual Processor Idle Sleep State in Section 10.1.4. Supporting
the virtual guest idle state requires the AccessGuestIdleMsr privilege
(CPUID.40000003:EAX:10=1), and support for the HV_X64_MSR_GUEST_IDLE MSR.

Miscellaneous Implementation Notes

This section discusses general notes on implementation details when Windows
operating systems are run in virtual machines.

Inter-Processor Interrupts (IPI)

Conforming hypervisors must provide special semantics for self-IPIs. Following any
guest instruction which has the effect of sending an IPI (e.g., a write to the virtual
APIC’s Interrupt Command Register, or a write to the HV_X64_MSR_ICR MSR5), if the
sending VP is included in the destination of the IPI, the sending VP must receive the

3 Not supported on Windows Vista RTM
4 Refer to “Processor Power Management in Windows 7 and Windows Server 2008 R2” in the
References section in this document.
5 If implemented by the hypervisor

June 13, 2012
© 2012 Microsoft. All rights reserved.

interrupt before the next guest instruction is executed. This ensures that if the
sending VP is ready to service the interrupt it will be serviced immediately, before any
other guest instructions are executed.

Microsoft Hyper-V Virtual Machine Bus

Third party virtualization solutions must not claim support for the Microsoft Hyper-V
Virtual Machine Bus (VMBus) device in the virtual BIOS ACPI namespace. The VMBus
device should be correctly disabled on any V2V or P2V conversion.

Resources

Hypervisor Functional Specification v2.0a: For Windows Server 2008 R2
http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=18673

Windows ACPI Emulated Devices Table
http://msdn.microsoft.com/en-us/windows/hardware/gg487524

Processor Power Management in Windows 7 and Windows Server 2008 R2
http://www.microsoft.com/whdc/system/pnppwr/powermgmt/ProcPowerMgmt
Win7.mspx

http://www.microsoft.com/download/en/details.aspx?displaylang=en&id=18673
http://msdn.microsoft.com/en-us/windows/hardware/gg487524
http://www.microsoft.com/whdc/system/pnppwr/powermgmt/ProcPowerMgmtWin7.mspx
http://www.microsoft.com/whdc/system/pnppwr/powermgmt/ProcPowerMgmtWin7.mspx

